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A large collection of people are smarter than an elite few. 
In “the Wisdom of Crowds”, Surowiecki,(2004) suggests new
insights regarding how our social and economic activities
should be organized.
: The wisdom of crowds emerges only under the right conditions
(diversity, independence, etc)

Wisdom of Crowds: 
Collective Intelligence
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• Crowds are wise, but are also often foolish.

Then under what mechanism can we improve the performance of Then under what mechanism can we improve the performance of 
　　 collective systems?collective systems?

:The way of interaction, the network topology, :The way of interaction, the network topology, 
plays a crucial roleplays a crucial role

Phase Transition 
in Collective Behavior
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Emergence by Nature
Emergence by nature (empirical view)
View emergence as an “innate property” of natural systems

“Systems self-organize into a complex state, poised between 
predictable cyclic behavior and unpredictable chaos”

: Inspires research to discover and explain emergent behaviors

Internet
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Emergence by Design
Emergence by design strategies (operational view)

“System-wide behavior emerges from interactions among 
individual elements”

: Some researchers view emergence as a property that is 
“designed” into systems

: Inspire research into design techniques to induce 
desired emergent behaviors
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Emergence by Design: 
Illusion of Control?

Internet 
throughput

self-similarities Meta-stabilities

distribution of 
call types in
wireless cells

synchronization 
among routers

phase transitions

unordered equilibrium
(self-organized criticality)

oscillation

chaos

turbulence

high load          and  the network topology play crucial roles

Difficult to predict and control                    
because of phase-transitional behavior

congestion collapse
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Emergence by Design:
Evolutionary Optimization (1)

• Design of Communication Networks
Tradeoff between congestion and network 

design cost

• Diffusion of Innovation

• Consensus (synchronization) in Networked 
Systems
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A Network Flow Model
Packet generation
• Packet is generated at random with some rates

Each nodes process one packet per time
Each node has a queue to store undelivered packets

Routing: Shortest path 
Traffic congestion is determined by 

node betweenness
: total shortest paths through the node

Queue
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Optimized Networks: 
Minimizing congestion

• Network size: 32 nodes
• Fixed number of links

• Optimal network
• Star network: packet generation rate is small
• Random network: packet generation rate is high

star

random

〉〈
〉〈−

= ∈

β
ββθ iNimax

〈β〉: Average node betweennessPolarization

Optimization in complex network, (Ferrere, 2006)
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Adjacency Matrix of Graph

The cording of the adjacency matrix: A=(aij )
• Node i and node  j is connected ：aij= 1
• Node i and node  j is not connected ： aij= 0

Adjacency matrix
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Stochastic Optimization
Simulated annealing 
• Probabilistic algorithm for the optimization problem
• Rewiring trials - Rewiring a randomly selected link
• Fitness function to be optimized: Q 

• if δQ = Qfinal − Qinitial < 0
accept rewiring

N = 50, and <k> = 4

Optimized network
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The Fitness Function (1) 
Link Density

Design cost: the link density ：α

• Maximum possible links of the network with n nodes:  nC2

• The number of links 

∑
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The Fitness Function (2)
Congestion Index

Congestion measure ：λ(ρ)
• Packet generation probability on certain node ：

• Quantity of packet input on k node ：

• Quantity of packet output：1

• Queue length average on k node ：

• Total queue length on the network:
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ρ: packet generation rate 

Little’s law

βk：betweenness at k node

Congestion measure
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• Link density：α

• Congestion function：λ(ρ)
• ρ： Packet generation rate 

• Weight ： ѡ

The Weighted Fitness Function
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The weighted object function to be minimized：E(ѡ, ρ)
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Generic Algorithm
MGG Model(Minimal Generation Gap)

Crossover rate ：0.7
Mutation rate : 2/nC2

Number of Individuals ：10
(networks)

Generic code representation
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An Initial Network

Initial： Random network
A fixed number of nodes ： 100
Links creation

Poisson distribution
7 link per each node

The degree distribution 

# 
of
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degree
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αωρωλρω )1()(),( −+=E

Optimized Network (1)

ѡ = 1 : Optimizing only congestion function 
(packet generation rate: ρ=0.3)

• Optimal network:  Complete network
• Average link per node ： 99.9
• Link density ： 0.9999 (4949/4950)
• Congestion function value ： 0→ no congestion 

# 
of

 n
od

es

degree

The degree distribution 
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Optimized Network (2)

ѡ = 0 : Minimizing only link density

• Optimal network: Tree-like network
• Average link ：1.98
• Link density ：0.02(99/4950)
• Congestion index ：0.027

→ Tree structure has the smallest links

# 
of

 n
od

es

degree

αωρωλρω )1()(),( −+=E

(packet generation rate: ρ=0.3)
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Single Star

CompleteRandomHub & Tree

Line Like Tree

Single Hub

Multi Star Overlap StarMulti Hub

ω
ρ

0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 1

0.05 LT LT LT SH SH HT SH SH MS SS SS SS C

0.1 LT LT SH SH MH SH SH SS SS SS SS SS C

0.2 LT HT HT SH SH MS MS SS SS SS R R C

0.3 LT HT SH SH MS MS SS SS SS OS R R C

0.4 LT HT SH MS MS SS OS SS SS OS R R C

0.5 LT HT HT MS MS SS OS OS OS R R R C

0.6 LT MH HT MS SS OS OS OS OS R R C C

0.7 LT HT MH MS SS OS OS OS OS R R C C

0.8 LT MH MH MS OS OS OS OS R R R C C

0.9 LT MH MS MS OS OS OS R R R R C C

0.95 LT MH MS OS OS OS OS R R R R C C
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Optimized Networks (3)
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Summary: 
Optimal Traffic Networks

Phase 1: Tree → Hub → Star
:The link density increases slowly α≑0.02 → 0.15

Phase 2:  Star → Random → Complete 
: Link density increases suddenly   α=0.15 → α≑1

Tree Hub

StarMulti-star
Random Complete 

StarIntermediate

Phase 1 Phase 2
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Emergence by Design:
Evolutionary Optimization(2)

• Design of Communication Networks
Tradeoff between congestion and design cost

• Diffusion of Innovation

• Consensus (synchronization) in Networked 
Systems
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Diffusion of Innovation

1975 19801970 1985

1.2M

0.8M

0.4M

0

Group#1

Installed base of facsimile machine  
in North America (Rohlfs)

Group#3

Group#2

Why the markets occasionally accept innovations 
rather slowly compared with the superior 
technological advances of the innovation?
“The slow pace of the fast change” (B. Chakravorti, 2003)

critical 
mass

Competitive Innovations i-Phone 

One SEG

http://discussions.apple.com/search.jspa?objID=f1139&search=Go&q=dead+spots
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Diffusion Models
Concept of diffusion and contagion arises in many 
fields
• Spread of infectious disease
• Diffusion of innovations
• Emergence of uncertainty in economic beliefs
• Transmission of cultural fads

Question 1: In what sense are these phenomena the same 
and how are they different? 
Question 2: What conditions trigger the decision to adopt 
something?
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An Epidemic Diffusion Model (1)

The SIR model 
Consider a fixed population of size N
Each individual is in one of three states:
• Susceptible (S), Infected (I), Removed (R)

S I Rλβ

Dynamic process: Mixing model
At each time step, each individual comes into 
contact with another individual chosen uniformly at 
random

j

i
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An Epidemic Diffusion Model (2)
Each node may be in the following states
• Susceptible (S) (unaware, also inactive, non-adopter)
• Infected (I) (aware, also active, informed, adopter)
• Removed (R) (lose interest or forget)

Infection rate β : probability of getting infected by a neighbor 
per unit time
Immunization rate γ: probability of a node getting recovered 
per unit time

u

v

w

q
Time 1

u

v

w

q
Time 3

u

v

w

q
Time 2
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Universal Property of Diffusion Models

Critical mass: threshold property in social dynamics

•Global Infection only occur after a threshold (critical mass)

•Many  models on epidemic spreads, information cascades, 
fads, have the same threshold property

•susceptible become infected 
through their contacts with 
infected individuals  at a rate 
•Infected agents are removed 
at rate    
•There is a threshold above which the 
•diseases spread through the population 

cλ
γ
β

=

cλ

γ

•The network topology affects critical mass

β
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ρ

λλ c

disease  spreads
disease diesλ c =

<k2>
<k>

Network Topology & Critical Mass

The critical mass is given at

<k>: average degree of node

Random & SW networks

Scale-free networks

Scale-free network does 
not have critical mass
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Social Influence Networks

Impact of opinion leaders may be largePeer influence creates 
consensus

within small social groups 

hub agent 

Local networks
Scale-free networks
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Dominant Eigenvalue of Adjacency Matrix

Adjacency matrix: symmetric
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Example：

nλλλ ≥≥≥ L21Eigenvalue of symmetric matrix

is  the largest eigenvalue of the adjacency matrix A( )Aλ 1

The epidemic threshold is  λc=β/γ=1/λ1(A)
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Convergence of Diffusion Process

The expected state of the system at time t is given by

As t ∞

•
• the probability that all copies die converges to 1

•
• the probability that all copies die converges to 1

•
• the probability that all copies die converges to a constant < 1

( )( ) 1tt −−+= vIAv q1p

( )( ) ( ) 0 then λ1q1pλ if t
11 →<⇔<−+ vAIA βγ

( )( ) ( ) cvAIA →=⇔=−+ t
11 then  λ1q1pλ if βγ

( )( ) ( ) ∞→=⇔>−+ t
11 then  λ1q1pλ if vAIA βγ

is  the largest eigenvalue of the adjacency matrix A( )Aλ 1
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The Largest Eigenvalue

average max maxd dλ≤ ≤

max 2max
Tx Ax
x

λ =

max max maxd dλ≤ ≤

average degree maximum degree

If G is regular of degree d, then max .dλ =
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An Eigenvalue Point of View

:  the largest eigenvalue of the adjacency matrix A( )Aλ 1

Object 1: Minimizing spread of diffusion
Object 2: Maximizing spread of diffusion

star

1λ 1 −= N

complete

1λ 1 −= N

random 

>=<= kpN1λ
Multi Hub

Scale free

4/1
1λ N≅

p: connection probability
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Minimizing Diffusion

• Object function 1:
Minimize the largest eigenvalue

nλλλ ≥≥≥ L21

><−+= kF )1(1 ωωλ

ω=0.1 ω=0.5 ω=0.9

<k>=1.98 <k>=1.98 <k>=1.98

<k>: average degree

λ1=2.38 
λn=-2.38

λ1=2.48
λn=-2.48

Line structure is optimal for minimizing diffusion

λ1=2.38 
λn=-2.38
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Maximizing Diffusion
• Object function 2:

Maximize the largest eigenvalue

)1/( −>=< Nkρ
ρωλω )1(/ 1 −+=F

Complete networks

star networks

<k>: average 
degree

Core dense network is optimal for maximizing diffusion

ρ link density

ω=0.1 ω=0.2 ω=0.3 ω=0.4 ω=0.5

ω=0.6 ω=0.7 ω=0.8 ω=0.9

<k>=2.28 λ1=8.96
λn=-3.82

<k>=2.66 λ1=10.23
λn=-3.29

<k>=2.88 λ1=13.01
λn=-3.10

<k>=3.52
λ1=13.88
λn=-3.28 <k>=3.76

λ1=6.42
λn=-3.10

<k>=4.68 λ1=19.99 <k>=5.76 λ1=24.08 <k>=7.5
λ1=29.87
λn=-3.02

<k>=10.62
λ1=17.04
λ =-3.08

λn=-3.13 λn=-2.79n

ω=1

λ1=100.0
λn=-1.98 <k>=98.9
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Emergence by Design:
Evolutionary Optimization (3)

• Design of Communication Networks
Tradeoff between congestion and design cost

• Diffusion of Innovation

• Consensus (synchronization) in Networked 
Systems
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Consensus Problems
“Consensus” means to reach an agreement 
regarding a certain quantity of interest that depends 
on the state of all nodes (subsystems). 
More specific, a consensus algorithm is a 
decentralized rule that results in the convergence of 
the states of all network nodes to a common value.

[01]: Olfati-Saber 2007

Source: Olfati-Saber 2007 [C1]

xi = xj = …= xconsensus
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Consensus Problems in Engineering

A position reached by a group as a whole 

Battle space management scenario illustrating distributed 
command and control between heterogeneous air and 
ground assets
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Synchronization: Prevalent appearance in physics and biology

Homogeneity is important for better synchronization

Synchronization

Diversityhigh low
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Consensus Problems & SynchronizationConsensus Problems & Synchronization

“Emergent behavior on flocks”

Vicsek T,.Phys Rev Letter (1995)

““Consensus has connections to problem in synchronizationConsensus has connections to problem in synchronization””
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Question: How do we add some new links with better consensus?

? ?

?

Engineering Problems
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Synchronization in Globally Connected NetworksSynchronization in Globally Connected Networks

Observation:Observation:
No matter how large the network is, a globally coupled 
network will synchronize if its coupling strength is 
sufficiently strong

Good – if synchronization is useful

G. Ron Chen (2006)G. Ron Chen (2006)
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Synchronization in Locally Connected NetworksSynchronization in Locally Connected Networks

Observation:Observation:
No matter how strong the coupling strength  is, 
a locally coupled network will not synchronize if its size is 
sufficiently large

Good - if synchronization is harmful

G. Ron Chen (2006)G. Ron Chen (2006)
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SynchronizationSynchronization in Small-World Networks

Start from a nearest neighbor 
coupled network

Add a link, with 
probability p, 
between a pair 
of nodes

Good news

X.F.Wang and G.R.Chen: Int. J. Bifurcation & Chaos (2001)

: : A small-world network is easy to synchronize!!

small-world network
G. Ron Chen (2006)G. Ron Chen (2006)



44  - Seoul National University (2008.12.18)

Synchronization & Network Topology

λ1 = 0 is always an eigenvalue of a Laplacian matrix

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

nk

k
k

}1,0{

}1,0{

2

1

O
λ2 = 0.238

λ2 = 0.925

Laplacian matrix = Degree – Adjacency matrix

Laplacian matrix
Network A Network B

Connectivity of networks does matter for synchronization

λn / λ2 ：algebraic connectivity

: Smaller algebraic connectivity
: better consensus formation
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Consensus Problems & Network Topology

The distributed consensus algorithm

The weighted adjacency matrix G=(wij)

(i) Graph G is connected
(ii)G is balanced: symmetric graph

∑∑ ≠≠
=

ij jiji ij ww

))()(()()1( txtxwtxtx i
Ni

jijii
i

−+=+ ∑
∈

ε

nxxxx
i in /)0(...21 ∑====

Convergence to the average of the initial values of all agents
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Convergence in Consensus Problems
circle
• average link：2
• λn / λ2 ＝ 365

• λ2 ：0.01
• λn ：4

line
• average link ：2
• λn / λ2 ＝ 1458

• λ2 ：0.003
• λn ：4

complete network
• average link ：60
• λn / λ2 ＝ 1

• λ2 ：60
• λn ：60

S
ta

te

0.15Time(sec)

800

S
ta

te

2000

S
ta

te

Initial value of each agent：xi(o)=i
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Optimized Networks (1)
αω

λ
λωω ⋅−+⋅= )1()(

2

nE

λ2=0.7
λn=7.57
λn/λ2=10.81

α=3.3
P=1.36

ω=0.1 ω=0.2

λ2=1.07
λn=8.00
λn/λ2=7.38

α=3.9
P=1.35

ω=0.3

λ2=1.65
λn=8.64
λn/λ2=5.25

α=4.7
P=0.68

ω=0.4

λ2=2.16
λn=9.49
λn/λ2=4.39

α=5.3
P=0.64

ω=0.5

λ2=2.83
λn=10.69
λn/λ2=3.78

α=6.2
P=0.66

λ2=0.27
λn=8.92
λn/λ2=33.2

α=3.4
P=2.23

λ2=0.48
λn=9.54
λn/λ2=20.0

α=4.0
P=2.41

λ2=0.77
λn=10.64
λn/λ2=13.9

α=4.7
P=1.4

λ2=0.96
λn=11.71
λn/λ2=12.3

α=5.3
P=1.82

λ2=1.73
λn=13.47
λn/λ2=7.8

α=6.2
P=2.2R

an
do

m
 n

et
w

or
ks

Ramanujam
network
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Optimized Networks (2)

αω
λ
λωω ⋅−+⋅= )1()(

2

nE

λ2=1.58
λn=13.89
λn/λ2=8.75

α=6.9
P=1.37

λ2=2.08
λn=15.86
λn/λ2=7.6

α=8.3
P=1.99

λ2=3.87
λn=19.15
λn/λ2=4.95

α=10.2
P=1.77

λ2=5.53
λn=21.02
λn/λ2=3.8

α=12.4
P=0.95

ω=0.6 ω=0.7 ω=0.8 ω=0.9

λ2=3.4
λn=11.46
λn/λ2=3.35

α=6.9
P=0.47

λ2=4.64
λn=13.35
λn/λ2=2.87

α=8.3
P=0.51

λ2=6.17
λn=15.63
λn/λ2=2.53

α=10.2
P=0.50

λ2=8.34
λn=18.57
λn/λ2=2.23

α=12.8
P=0.31
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Ramanujan
network
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Comparison of Convergence Speed
Initial value of each agent：xi(o)=i

average link= 11average link=5

Random
network

Optimal 
network
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Synchronization,
Maximize the effect of 

coordinated behavior

Multi-graph Topologies
Minimizing spread
Minimize the spread of cascade 
failure or infective diseases

Maximizing spread
Maximize the influence in voting 
campaign
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Five Stages of Research

1) Observe: Gather data to demonstrate power law behavior 
in a system. 

2) Interpret: Explain the import of this observation in the 
system context.

3) Model: Propose an underlying model for the observed 
behavior of the system.

4) Validate:  Find data to validate (and if necessary 
specialize or modify) the model.

5) Design (Control):Design ways to control and modify the 
underlying behavior of the system based on the model.

Lots of open research problems in the design of complex systems
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Conclusion

Social systems involve a large-scale self-interested 
individual decisions that are main obstacles as well as 
driven forces for improving social  systems.

Social improvements that requires persuasion and 
consensus among us become very slow since most social 
influence networks are asymmetric

Evolutionary optimization is a powerful method 
for designing desirable social systems.
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　　　　　Thank you for listening!!

Question Time 
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