Optimization in Networked Systems

Akira Namatame(生天目 章) Seung-Youp Shin(申 昇燁) National Defense Academy of Japan www.nda.ac.jp/~nama

Seoul National University (2008.12.18)

Wisdom of Crowds: Collective Intelligence

A large collection of people are smarter than an elite few. In "the Wisdom of Crowds", Surowiecki*,*(2004) suggests new insights regarding how our social and economic activities should be organized.

: The wisdom of crowds emerges only under the right conditions (diversity, independence, etc)

Phase Transition in Collective Behavior

- Crowds are wise*,* but are *also often foolish.*
	- Then under what mechanism can we improve the performance of collective systems?
		- *:The way of interaction, the network topology, :The way of interaction, the network topology, plays a crucial role plays a crucial role*

Emergence by Nature

- ٠ Emergence by nature (empirical view)
- ٠ View emergence as an "innate property" of natural systems "*Systems self-organize into a complex state, poised between predictable cyclic behavior and unpredictable chaos"*
- : Inspires research to discover and explain emergent behaviors

Internet

4 - Seoul National University (2008.12.18)

Emergence by Design

- Emergence by design strategies (operational view)
- "System-wide behavior emerges from interactions among individual elements"
- : Some researchers view emergence as a property that is "designed" into systems
- : Inspire research into design techniques to induce

desired emergent behaviors

٠

Emergence by Design: Illusion of Control?

Emergence by Design: Evolutionary Optimization (1)

- Design of Communication Networks Tradeoff between congestion and network design cost
- Diffusion of Innovation
- Consensus (synchronization) in Networked Systems

A Network Flow Model

Packet generation

٠

٠

٠

٠

- Packet is generated at random with some rates
- Each nodes process one packet per time
- Each node has a queue to store undelivered packets
	- ٠ Routing: Shortest path
- Traffic congestion is determined by node betweenness

: total shortest paths through the node

Optimized Networks: Minimizing congestion

- Network size: 32 nodes
- Fixed number of links
- Optimal network
	- Star network: packet generation rate is small
	- Random network: packet generation rate is high

Adjacency Matrix of Graph

- ٠ **The cording of the adjacency matrix: A=(a_{ij})**
	- Node *i* and node *j* is connected :*aij*= 1
	- Node *i* and node *j* is not connected : *aij*= 0

Stochastic Optimization

Simulated annealing

- •Probabilistic algorithm for the optimization problem
- •Rewiring trials - Rewiring a randomly selected link
- •Fitness function to be optimized: Q

The Fitness Function (1) Link Density

٠ Design cost: the link density : α

$$
\alpha = \frac{1}{nC_2} \sum_{i < j} a_{ij}
$$

- \bullet • Maximum possible links of the network with n nodes: _nC₂
- The number of links

$$
\sum_{i < j} a_{ij}
$$

$$
\sum_{i < j} a_{ij} = 5
$$

The Fitness Function (2) Congestion Index

- Congestion measure : λ (ρ)
	- Packet generation probability on certain node : $\frac{P}{n-1}$

ρ: packet generation rate

- Quantity of packet input on *k* node : $\frac{\rho}{n-1} \times \beta_{k}$ $\frac{\rho}{-1} \times \beta_{\scriptscriptstyle{h}}$
- Quantity of packet output:1 β *^k*:betweenness at *k* node
- Queue length average on *k* node : $1 - \rho \frac{P k}{n-1}$ 1 −− − *nn k k* β ρ β ρ

Little's law

 ρ

Congestion measure

٠

• Total queue length on the network:

$$
\lambda(\rho) = \sum_{k \in N} \frac{\rho \frac{\beta_k}{n-1}}{1 - \rho \frac{\beta_k}{n-1}}
$$

13 - Seoul National University (2008.12.18)

The Weighted Fitness Function

- Link density: α
- Congestion function: λ (ρ)
	- ρ : Packet generation rate
- Weight : ω $0 \leq \omega \leq 1$

The weighted object function to be minimized: $E(\omega, \rho)$

Generic Algorithm

An Initial Network

- Initial: Random network
	- **A fixed number of nodes : 100**
	- **Links creation**
		- Poisson distribution
		- **□7 link per each node**

The degree distribution

Optimized Network (1)

 $E(\omega,\rho) = \omega \lambda(\rho) + (1-\omega)\alpha$

- ω = 1 : Optimizing only congestion function (packet generation rate: ρ =0.3)
- Optimal network: Complete network
	- Average link per node : 99.9
	- Link density : 0.9999 (4949/4950)
	- Congestion function value : $0\rightarrow$ no congestion

The degree distribution

17 - Seoul National University (2008.12.18)

Optimized Network (2)

$$
E(\omega,\rho) = \omega \lambda(\rho) + (1-\omega)\alpha
$$

 $\cdot \quad \omega = \mathsf{O}:\mathsf{Minimizing}$ only link density

(packet generation rate: ρ =0.3)

- Optimal network: Tree-like network
	- Average link :1.98

٠

- Link density :0.02(99/4950)
- Congestion index :0.027
- \rightarrow Tree structure has the smallest links

Optimized Networks (3)

Summary: Optimal Traffic Networks

Phase 1: Tree \rightarrow Hub \rightarrow Star :The link density increases slowly $\alpha \ne 0.02 \rightarrow 0.15$ Phase 2: Star \rightarrow Random \rightarrow Complete : Link density increases suddenly α =0.15 $\rightarrow \alpha$ \neq 1

Phase 1

Phase 2

Emergence by Design: Evolutionary Optimization(2)

- Design of Communication Networks Tradeoff between congestion and design cost
- Diffusion of Innovation
- Consensus (synchronization) in Networked Systems

Diffusion of Innovation

Why the markets occasionally accept innovations
rather slowly compared with the superior
technological advances of the innovation? *"The slow pace of the fast change" (B. Chakravorti, 2003)*

Installed base of facsimile machine in North America (Rohlfs)

Competitive Innovations i-Phone

One SEG

 $xy(2008.12.18)$

Diffusion Models

- ٠ Concept of diffusion and contagion arises in many fields
	- Spread of infectious disease
	- Diffusion of innovations
	- Emergence of uncertainty in economic beliefs
	- Transmission of cultural fads
- ٠ Question 1: In what sense are these phenomena the same and how are they different?
- ٠ Question 2: What conditions trigger the decision to adopt something?

An Epidemic Diffusion Model (1)

- The SIR model
- ٠ Consider a fixed population of size N
- \cdot Each individual is in one of three states:
	- Susceptible (S), Infected (I), Removed (R)

$$
S \xrightarrow{\beta} I \xrightarrow{\lambda} R
$$

- Dynamic process: Mixing model
- At each time step, each individual comes into contact with another individual chosen uniformly at random

An Epidemic Diffusion Model (2)

Each node may be in the following states

٠

٠

٠

- Susceptible (S) (unaware, also inactive, non-adopter)
- •Infected (I) (aware, also active, informed, adopter)
- Removed (R) (lose interest or forget)
- Infection rate β : probability of getting infected by a neighbor per unit time
- **Immunization rate** γ **: probability of a node getting recovered** per unit time

Universal Property of Diffusion Models

- •Global Infection only occur after a threshold (critical mass)
- •Many models on epidemic spreads, information cascades, fads, have the same threshold property

 $\lambda_c^{}~$ Critical mass: threshold property in social dynamics

•The network topology affects critical mass

Network Topology & Critical Mass

Social Influence Networks

Dominant Eigenvalue of Adjacency Matrix

$$
A = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}
$$

Eigenvalue of symmetric matrix $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$

 $\lambda_1(A)$ is the largest eigenvalue of the adjacency matrix A

٠ • The epidemic threshold is λ_c = $=\beta/\gamma=1/\lambda_1(A)$

Convergence of Diffusion Process

٠ The expected state of the system at time t is given by

$$
\therefore \quad \mathbf{A}\mathbf{s} \; \mathbf{t} \to \infty \quad \mathbf{v}^{\mathbf{t}} = (\mathbf{p}\mathbf{A} + (\mathbf{1} - \mathbf{q})\mathbf{I})\mathbf{v}^{\mathbf{t} - 1}
$$

- if $\lambda_1 (pA + (1-q)I) < 1 \Leftrightarrow \lambda_1 (A) < \gamma / \beta$ then $v^t \to 0$
	- the probability that all copies die converges to 1
- if $\lambda_1(pA + (1-q)I) = 1 \Leftrightarrow \lambda_1(A) = \gamma/\beta$ then $v^t \to c$
	- the probability that all copies die converges to 1
- if $\lambda_1(pA + (1-q)I) > 1 \Leftrightarrow \lambda_1(A) = \gamma/\beta$ then $v^t \to \infty$
	- the probability that all copies die converges to a constant ≤ 1

$\lambda_{_{1}}\!\left(\mathrm{A}\,\right)$ is the largest eigenvalue of the adjacency matrix A

The Largest Eigenvalue

If G is regular of degree d , then λ_{\max} = *d*.

31 - Seoul National University (2008.12.18)

An Eigenvalue Point of View

 $\lambda_{_{1}}(\mathrm{A}\,)$: the largest eigenvalue of the adjacency matrix A

p: connection probability

Object 1: Minimizing spread of diffusion Object 2: Maximizing spread of diffusion

Minimizing Diffusion

• Object function 1: Minimize the largest eigenvalue $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$

 $F = \omega \lambda_1 + (1 - \omega) < k >$ $\langle k \rangle$: average degree

Line structure is optimal for minimizing diffusion

Maximizing Diffusion

• Object function 2:

Maximize the largest eigenvalue

Emergence by Design: Evolutionary Optimization (3)

- Design of Communication Networks Tradeoff between congestion and design cost
- Diffusion of Innovation
- Consensus (synchronization) in Networked Systems

Consensus Problems

- "Consensus" means to reach an agreement regarding a certain quantity of interest that depends on the state of all nodes (subsystems).
- *More specific, a consensus algorithm is a decentralized rule that results in the convergence of the states of all network nodes to a common value.*

Consensus Problems in Engineering

A position reached by a group as a whole

Battle space management scenario illustrating distributed command and control between heterogeneous air and ground assets

Synchronization

Synchronization: Prevalent appearance in physics and biology Homogeneity is important for better synchronization

Consensus Problems & Synchronization

"Consensus has connections to problem in synchronization"

Model: every bird adjusts its velocity by adding to it a weighted average of the differences of its velocity with those of the other birds. That is, at time $t \in \mathbb{N}$, and for bird i.

$$
v_i(t+1) - v_i(t) = \sum_{i=1}^k a_{ij}(v_j(t) - v_i(t))
$$

"Emergent behavior on flocks"

 $(2008.12.18)$

Vicsek T,.Phys Rev Letter (1995)

Engineering Problems

Question: How do we add some new links with better consensus?

40 - Seoul National University (2008.12.18)

Synchronization in Globally Connected Networks

Observation: Observation:

No matter how large the network is, a globally coupled network will synchronize if its coupling strength is sufficiently strong

Good –if synchronization is useful

G. Ron Chen (2006) G. Ron Chen (2006)

Synchronization in Locally Connected Networks

Observation: Observation:

No matter how strong the coupling strength is, a locally coupled network will not synchronize if its size is sufficiently large

Good - if synchronization is harmful

G. Ron Chen (2006) G. Ron Chen (2006)

42 - Seoul National University (2008.12.18)

Synchronization in Small-World Networks

Start from a nearest neighbor

coupled network

G. Ron Chen (2006) G. Ron Chen (2006)

small-world network

Good news : A small-world network is easy to synchronize!

X.F.Wang and G.R.Chen: Int. J. Bifurcation & Chaos (2001)

Synchronization & Network Topology

Connectivity of networks does matter for synchronization

⎢

 $\{0,-1\}$

 $k_{\scriptscriptstyle 1}$

 $\sqrt{2}$

Laplacian matrix

 $\ddot{}$.

 $k_{\tiny 2}$

٠

 $\lambda_2 = 0.925$

 $k_{_n}$

 $\{0,-1\}$

⎥

 $\overline{}$

⎥

⎥

 $\overline{}$

⎤

 $\overline{\mathsf{L}}$ **Laplacian matrix = Degree –Adjacency matrix**

 $\lambda_1 = 0$ is always an eigenvalue of a Laplacian matrix

 $0 = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \leq 2\Delta$ $\Delta = \max_i d_i$

$\lambda_{\sf n}$ / $\lambda_{\sf 2} \,$: algebraic connectivity

- : Smaller algebraic connectivity
- : better consensus formation

Consensus Problems & Network Topology

 $x_1 = x_2 = ... = x_n = \sum_i x_i(0) / n$ **Convergence to the average of the initial values of all agents**

The weighted adjacency matrix G=(w_{ij})

(i) Graph G is connected (ii) G is balanced: symmetric graph

$$
\sum\nolimits_{i \ne j} w_{ij} = \sum\nolimits_{j \ne i} w_{ji}
$$

Convergence in Consensus Problems

٠ circle

- •average link:2
- $\lambda_{\rm n} / \lambda_{\rm 2} = 365$
	- λ_2 : 0.01
	- λ_n : 4

٠ line

- •average link :2
- $\lambda_{\rm n}^{\rm A}/\lambda_{\rm m}^{\rm A}=1458$
	- λ_2 : 0.003 • λ_n : 4
- ٠ complete network
	- \bullet average link :60
	- $\lambda_{\rm n} / \lambda_{\rm 2} = 1$
		- λ_2 :60
		- λ_n :60

Initial value of each agent: $x_i(o) = i$

Time(sec)

0.15

46 - Seoul National University $(2008.12.18)$

Optimized Networks (1)

Ramanujam network

Optimized Networks (2)

Comparison of Convergence Speed

 $\ddot{\bullet}$ Initial value of each agent: $x_i(o) = i$

49 - Seoul National University (2008.12.18)

Multi-graph Topologies

٠

٠

٠ Maximizing spread

٠

 Maximize the influence in voting campaign

 Minimizing spread *Minimize the spread of cascade failure or infective diseases*

Synchronization, *Maximize the effect of coordinated behavior*

Five Stages of Research

- 1) Observe: Gather data to demonstrate power law behavior in a system.
- 2) Interpret: Explain the import of this observation in the system context.
- 3) Model: Propose an underlying model for the observed behavior of the system.
- 4) Validate: Find data to validate (and if necessary specialize or modify) the model.
- 5) Design (Control):Design ways to control and modify the underlying behavior of the system based on the model.

Lots of open research problems in the design of complex systems

Conclusion

- ٠ Social systems involve a large-scale self-interested individual decisions that are main obstacles as well as driven forces for improving social systems.
- ٠ Social improvements that requires persuasion and consensus among us become very slow since most social influence networks are asymmetric
- ٠ *Evolutionary optimization is a powerful method for designing desirable social systems.*

Thank you for listening!!

Question Time

Seoul National University (2008.12.18)