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I. Introduction (1): 
The era of parallelism

• Their imminence announced so many  times that 
it started to appear as if it was never going to 
happen.

• But it was well known that this was the future.

• This hope for the future and the importance of 
high-end machines led to extensive software 
activity from Illiac IV times to our days (with a 
bubble in the 1980s).
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I. Introduction (2):
Accomplishments

• Parallel algorithms. 
• Widely used parallel programming notations

– distributed memory (SPMD/MPI) and 
– shared memory (pthreads/OpenMP).

• Compiler and program synthesis algorithms
– Automatically map computations and data 

onto parallel machines/devices. 
– Detection of parallelism.

• Tools. Performance, debugging. Manual tuning.
• Education.
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I. Introduction (3):
Accomplishments

• Goal of architecture/software studies: to 
reduce the additional cost of parallelism. 
– Want efficiency/portable efficiency



The challenge of parallel 
programming

• Correctness. 
– Communication/synch errors → races and deadlocks.

• Efficiency – fraction of best possible performance.
• Portability – maintaining correctness and efficiency.

– There will be a wider range of possibilities than in the 
sequential era. Heterogeneous machines.

• Scalability – Performance gains with each new 
generation
– The free ride of faster clock rates is no more.
– Lack of scalability more apparent than in the sequential 

era.
– Scalability is the business model. 
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• But much remains to be done and, most 
likely, widespread parallelism will give us 
performance at the expense of a dip in 
productivity.

I. Introduction (4):
Present situation
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I. Introduction (5):
The future

• Although advances not easy, we have now 
many ideas and significant experience.

• And … Industry interest → more resources 
to solve the problem.

• The extensive experience of massive 
deployment will also help.

• The situation is likely to improve rapidly. 
Exciting times ahead.
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II. Languages (1):
OpenMP and MPI

• OpenMP constitutes an important advance, but 
its most important contribution was to unify the 
syntax of the 1980s (Cray, Sequent, Alliant, 
Convex, IBM,…). 

• MPI has been extraordinarily effective.
• Both have mainly been used for numerical 

computing. Both are widely considered as “low 
level”. 

• Alternatives have been designed. Next: an 
example of higher level language for numerical 
computing.
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• Recognizes the importance of 
blocking/tiling for locality and parallel 
programming. 

• Makes tiles first class objects. 
– Referenced explicitly. 
– Manipulated using array operations such as 

reductions, gather, etc..
Joint work with IBM Research.
G. Bikshandi, J. Guo, D. Hoeflinger, G. Almasi, B. Fraguela, M. Garzarán, D. Padua, 
and C. von Praun. Programming for  Parallelism and Locality with Hierarchically Tiled. 
PPoPP, March 2006. 

II. Languages (2):
Hierarchically Tiled Arrays



12

2 X 2 tiles
map to distinct modules
of  a cluster

4 X 4 tiles
Use to enhance locality on L1-cache

2 X 2 tiles
map to registers

II. Languages (3):
Hierarchically Tiled Arrays
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h{1,1:2}   

h{2,1} 

hierarchical

tiles

II. Languages (4):
Accessing HTAs 
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II. Languages (5):
Tiled matrix multiplication

for I=1:q:n
for J=1:q:n

for K=1:q:n
for i=I:I+q-1

for j=J:J+q-1
for k=K:K+q-1

C(i,j)=C(i,j)+A(i,k)*B(k,j);
end

end
end

end
end

end

for i=1:m
for j=1:m

for k=1:m
C{i,j}=C{i,j}+A{i,k}*B{k,j};

end
end

end



repmat(h, [1, 3])

circshift( h, [0, -1] )

transpose(h)

II. Languages (6): 
Higher level operations
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II. Languages (7): 
Higher level operations



II. Languages (8): 
User-defined operators

output = map( op, input );

op

op
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value
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value value

value value
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op op

op

op

input output

17

output = mapReduce( op, input );



II. Languages (9): 
Cannon's parallel matrix multiplication
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II. Languages (10): 
Cannon's parallel matrix Multiplication

%Main loop
for i = 1:n

c = c + a * b;
a = circshift( a, [0, -1] );
b = circshift( b, [-1, 0] );

end 
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II. Languages (11):
Summa matrix multiplication

T2{:,:}

B

T1{:,:}A matmul

function C = summa (A, B, C)
for k=1:m 

T1 = repmat(A{:, k}, 1, m);
T2 = repmat(B{k, :}, m, 1);
C = C + matmul(T1{:,:} ,T2 {:,:});

end

repmat

repmat

broadcast

parallel computation
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II. Languages (12):
Advantages of tiles as first class objects

• Array/Tile notation produces code more 
readable than MPI. It significantly reduces 
number of lines of code. 
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EP            CG           MG          FT            LU

Lines of code

Lines of Code. HTA vs. MPI

II. Languages (13):
Advantages of tiles as a first class objects
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• More important advantage: Tiling is explicit. 
This simplifies/makes more effective 
automatic optimization.

II. Languages (14):
Advantages of tiles as first class objects

for i=1:m
for j=1:m

for k=1:m
C{i,j}=C{i,j}+A{i,k}*B{k,j};

end
end

end

Size of tiles ?



II. Languages (15): 
Data parallelism beyond arrays:

Operations on aggregates

• Operations on aggregates do not have to 
be confined to arrays

• Other objects such as trees, graphs, and 
sets can and have been used in the past.

• A good example of the use of sets for 
programming is the language SETL.

24



II. Languages (16): 
Parallel search algorithm

select

expand

W

expand

select

W

25



II. Languages (17): 
Parallel search algorithm

W={root};
S = solutions(W)
while S = Ø

ALL = expand(W)
W = select(ALL)
S = solutions(W)
Tree = Tree + ALL  /* + is set union */
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II. Languages (18): 
What problem domains and set 

operations

• We have studied several areas including
– Search algorithms for discrete optimization
– Datamining
– Triangularization

• In all cases, it was possible to obtain a 
highly parallel version using set operations
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II. Languages (18): 
Data parallel operators and parallel 

programming
• Parallel programs written based on operators 

resemble conventional, serial programs.
– Parallelism is encapsulated.
– Parallelism is structured

• Parallelism could be portable across classes of 
machines.
– Operations must be reimplemented for each new 

class of machine.
• Synthesis is possible
• Compiling facilitated by the higher level notation.

28
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II. Languages (19):
Conclusions: What next ?

• High-level notations/new languages should be studied. 
Much to be gained.

• Much potential in data parallel operations.
• But .. New languages by themselves will not go 

far enough in reducing costs of parallelization. 
• Automatic optimization is needed.
• Parallel programming languages should be 

automatic optimization enablers.
– Need language/compiler co-design.
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III. Automatic Program Optimization (1)

• The objective of compilers from the outset.

“It was our belief that if FORTRAN, during its first months, 
were to translate any reasonable “scientific” source 
program into an object program only half as fast as its 
hand coded counterpart, then acceptance of our system 
would be in serious danger.”

John Backus
Fortran I, II and III
Annals of the History of Computing, July 1979.
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III. Automatic Program Optimization (2)

• Still far from solving the problem. CS 
problems seem much easier than they are.

• Two approaches:
– Compilers
– The emerging new area of program synthesis.
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III.1 Compilers (1)
Purpose

• Bridge the gap between programmer’s world 
and machine world. Between readable/easy to 
maintain code and unreadable high-performing 
code.

• The idiosyncrasies of multicore machines, 
however interesting in our eyes, are more a 
problem than a solution.

• In an ideal world, compilers or related tools 
should hide these idiosyncrasies.

• But, what is the hope of this happening today ?
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III.1 Compilers (2)
How well do they work ?

• Evidence accumulated for many years show that 
compilers today do not meet their original goal. 

• Problems at all levels:
– Detection of parallelism
– Vectorization
– Locality enhancement
– Traditional compilation

• I’ll show only results from our research group.
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III.1 Compilers (3)
How well do they work ? 

Automatic detection of parallelism
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Automatic Manual

R. Eigenmann, J. Hoeflinger, D. Padua On the Automatic Parallelization 
of the Perfect Benchmarks. IEEE TPDS, Jan. 1998.

Alliant FX/80
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III.1 Compilers (4)
How well do they work ? 

Vectorization
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G. Ren, P. Wu, and D. Padua: An Empirical Study on the 
Vectorization of Multimedia Applications for Multimedia 
Extensions. IPDPS 2005
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Intel MKL
(hand-tuned 
assembly)

Triply-nested loop+
icc optimizations

60X

Matrix Size

Matrix-matrix multiplication 
on Intel Xeon

0

III. 1 Compilers (5)
How well do they work ?
Locality enhancement

K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, P. Stodghill. 
Is Search Really Necessary to Generate High-Performance BLAS? 
Proceedings of the IEEE. February 2005.



Compiler vs. Manual Tuning
Matrix Matrix Multiplication
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icc -O3 -xT

icc -O3
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Compiler vs. Manual Tuning
Matrix Matrix Multiplication

loop 1
c[i*N+j] += a[i*N+k]*b[k*N+j]

loop 2
c[i][j] += a[i][k]*b[k][j]

loop 3
C += a[i][k]*b[k][j]

40
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III. 1 Compilers (6)
How well do they work ?
Scalar optimizations

J. Xiong, J. Johnson, and D Padua. SPL: A Language and Compiler for DSP 
Algorithms. PLDI 2001
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III. 1 Compilers (7)
What to do ?

• We must understand better the 
effectiveness of today’s compilers. 
– How far from the optimum ?

• One thing is certain: part of the problem is 
implementation. Compilers are of uneven 
quality. Need better compiler development 
tools.

• But there is also the need for better 
translation technology (and of course 
better languages)
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III.1 Compilers (8)
What to do ?

• One important issue that must be addressed is 
optimization strategy.

• For while we understand somewhat how to 
parse, analyze, and transform programs. The 
optimization process is poorly understood. 

• A manifestation of this is that increasing the 
optimization level sometimes reduces 
performance. Another is the recent interest in 
search strategies for best compiler combination 
of compiler switches.
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III.1 Compilers (9)
What to do ?

• The use of machine learning is an 
increasingly popular approach, but 
analytical models although more difficult 
have the great advantage that they rely on 
our rationality rather than throwing dice.
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III. 1 Compilers (10)
Obstacles

• Several factors conspire against progress 
in program optimization
– The myth that the automatic optimization 

problem is solved or insurmountable.
– The natural desire to work on fashionable 

problems and “low hanging fruits”
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III.2 Program Synthesizers (1)

• Emerging new field.
• Goal is to automatically generate highly efficient 

code for each target machine.
• Typically, a generator is executed to empirically 

search the space of possible 
algorithms/implementations. 

• Examples: 
– In linear algebra: ATLAS, PhiPAC
– In signal processing: FFTW, SPIRAL 
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III.2 Program Synthesizers (3)

• Automatic generation of libraries would
– Reduce development cost
– For a fixed cost, enable a wider range of 

implementations and thus make libraries more usable.
• Advantage over compilers: Can make use of 

semantics
– More possibilities can be explored.

• Disadvantage over compilers: Domain specific.
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Generator /
Search space 

explorer

High-level code

Source-to-source 
optimizer

Native compiler

Algorithm description

Object code Execution

performance

Selected
code

High-level code

Input data
(training)

III.2 Program Synthesizers (2)



III.2 Program Synthesizers (4)
Three synthesis projects

1. Spiral
Joint project with CMU and Drexel.
M. Püschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong, F. Franchetti, 
A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL: Code 
Generation for DSP Transforms. Proceedings of the IEEE special issue on "Program 
Generation, Optimization, and Platform Adaptation”. Vol. 93, No. 2, pp. 232-275. February 
2005. 

2. Analytical models for ATLAS
Joint project with Cornell.
K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, P. Stodghill. Is Search Really 
Necessary to Generate High-Performance BLAS? Proceedings of the IEEE special issue 
on "Program Generation, Optimization, and Platform Adaptation”. Vol. 93, No. 2, pp. 358-
386. February 2005.

3. Sorting and adaptation to the input

In all cases results are surprisingly 
good. Competitive or better than the 
best manual results.
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III.2 Program Synthesizers (5)
Sorting routine synthesis

• During training several features are selected 
influenced by:

• Architectural features
• Different from platform to platform

• Input characteristics
• Only known at runtime

• Features such as: Radix for sorting, how to 
sort small segments, when is a segment small.

X. Li, M. Garzarán, and D. Padua. Optimizing 
Sorting with Genetic Algorithms. CGO2005
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III.2 Program Synthesizers (6)
Sorting routine synthesis
Performance on Power4
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Similar results were obtained for parallel 
sorting.  

B. Garber. MS Thesis. UIUC. May 2006
D. Hoeflinger MS Thesis UIUC. August 2008.

III.2 Program Synthesizers (7)
Parallel sorting routine synthesis



III.2 Program Synthesizers (8)
Parallel sorting routine synthesis

Intel Quad CoreIntel Quad Core
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III.2 Program Synthesizers (9)
Programming synthesizers

• Objective is to develop language extensions to 
implement parameterized programs.

• Values of the parameters are a function of the 
target machine and execution environment.

• Program synthesizers could be implemented 
using autotuning extensions.

Sebastien Donadio, James Brodman, Thomas Roeder, 
Kamen Yotov, Denis Barthou, Albert Cohen, María Jesús 
Garzarán, David Padua and Keshav Pingali. A Language 
for the Compact Representation of Multiples Program 
Versions. In the Proc. of the International Workshop on 
Languages and Compilers for Parallel Computing, 
October 2005. 
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III.2 Program Synthesizers (10)
Programming synthesizers 

Example extensions.

#pragma search (1<=m<=10, a)
#pragma unroll m

for(i=1;i<n;i++) { … }
%if (a) then {algorithm 1 }

else {algorithm 2 }
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III.2 Program Synthesizers (11)
Research issues

• Reduction of the search space with 
minimal impact on performance. Analytical 
models/avoiding search.

• Adaptation to the input data (not needed 
for dense linear algebra)

• More flexible synthesizers
– algorithms
– data structures
– classes of target machines



III.2 Program Synthesizers (12)
Research issues

• Autotuning libraries.
– Algorithms
– Data parallel primitives
– Empirically identified patterns or codelets 

• Programming environments to facilitate 
development of synthesizers.
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IV. Conclusions
• Advances in languages and automatic 

optimization will probably be slow. Difficult 
problem.

• Advent of parallelism → Decrease in productivity. 
Higher costs.

• But progress must and will be made.
• Automatic optimization (including parallelization) 

is a difficult problem. At the same time is a core of 
computer science: 

How much can we automate ?
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