
Programming
in the Era of Parallelism

David Padua
University of Illinois at Urbana-Champaign

2

Outline of the talk

I. Introduction
II. Languages
III. Automatic program optimization

• Compilers
• Program synthesizers

IV. Conclusions

3

I. Introduction (1):
The era of parallelism

• Their imminence announced so many times that
it started to appear as if it was never going to
happen.

• But it was well known that this was the future.

• This hope for the future and the importance of
high-end machines led to extensive software
activity from Illiac IV times to our days (with a
bubble in the 1980s).

4

I. Introduction (2):
Accomplishments

• Parallel algorithms.
• Widely used parallel programming notations

– distributed memory (SPMD/MPI) and
– shared memory (pthreads/OpenMP).

• Compiler and program synthesis algorithms
– Automatically map computations and data

onto parallel machines/devices.
– Detection of parallelism.

• Tools. Performance, debugging. Manual tuning.
• Education.

5

I. Introduction (3):
Accomplishments

• Goal of architecture/software studies: to
reduce the additional cost of parallelism.
– Want efficiency/portable efficiency

The challenge of parallel
programming

• Correctness.
– Communication/synch errors → races and deadlocks.

• Efficiency – fraction of best possible performance.
• Portability – maintaining correctness and efficiency.

– There will be a wider range of possibilities than in the
sequential era. Heterogeneous machines.

• Scalability – Performance gains with each new
generation
– The free ride of faster clock rates is no more.
– Lack of scalability more apparent than in the sequential

era.
– Scalability is the business model.

6

7

• But much remains to be done and, most
likely, widespread parallelism will give us
performance at the expense of a dip in
productivity.

I. Introduction (4):
Present situation

8

I. Introduction (5):
The future

• Although advances not easy, we have now
many ideas and significant experience.

• And … Industry interest → more resources
to solve the problem.

• The extensive experience of massive
deployment will also help.

• The situation is likely to improve rapidly.
Exciting times ahead.

9

Outline of the talk

I. Introduction
II. Languages
III. Automatic program optimization

• Compilers
• Program synthesizers

IV. Conclusions

10

II. Languages (1):
OpenMP and MPI

• OpenMP constitutes an important advance, but
its most important contribution was to unify the
syntax of the 1980s (Cray, Sequent, Alliant,
Convex, IBM,…).

• MPI has been extraordinarily effective.
• Both have mainly been used for numerical

computing. Both are widely considered as “low
level”.

• Alternatives have been designed. Next: an
example of higher level language for numerical
computing.

11

• Recognizes the importance of
blocking/tiling for locality and parallel
programming.

• Makes tiles first class objects.
– Referenced explicitly.
– Manipulated using array operations such as

reductions, gather, etc..
Joint work with IBM Research.
G. Bikshandi, J. Guo, D. Hoeflinger, G. Almasi, B. Fraguela, M. Garzarán, D. Padua,
and C. von Praun. Programming for Parallelism and Locality with Hierarchically Tiled.
PPoPP, March 2006.

II. Languages (2):
Hierarchically Tiled Arrays

12

2 X 2 tiles
map to distinct modules
of a cluster

4 X 4 tiles
Use to enhance locality on L1-cache

2 X 2 tiles
map to registers

II. Languages (3):
Hierarchically Tiled Arrays

13

h{1,1:2}

h{2,1}

hierarchical

tiles

II. Languages (4):
Accessing HTAs

14

II. Languages (5):
Tiled matrix multiplication

for I=1:q:n
for J=1:q:n

for K=1:q:n
for i=I:I+q-1

for j=J:J+q-1
for k=K:K+q-1

C(i,j)=C(i,j)+A(i,k)*B(k,j);
end

end
end

end
end

end

for i=1:m
for j=1:m

for k=1:m
C{i,j}=C{i,j}+A{i,k}*B{k,j};

end
end

end

repmat(h, [1, 3])

circshift(h, [0, -1])

transpose(h)

II. Languages (6):
Higher level operations

15

repmat(h, [1, 3])

circshift(h, [0, -1])

transpose(h)
Opera

tio
ns i

mplem
en

ted
 as

mes
sa

ges
 if

HTA is

dist
rib

uted

16

II. Languages (7):
Higher level operations

II. Languages (8):
User-defined operators

output = map(op, input);

op

op

value

value

value

value value

value value

value valueop

op

op

op op

op

op

input output

17

output = mapReduce(op, input);

II. Languages (9):
Cannon's parallel matrix multiplication

A00 A01

A10

A20

A11

A21 A22

A12

A02 B01

B10

B20

B11

B21 B22

B12

B02B00

A00
B00

A01
B11

A02
B22

A12
B21

A11
B10

A10
B02

A22
B20

A20
B01

A21
B12

A00
B00

A01
B11

A02
B22

A12
B21

A11
B10

A10
B02

A22
B20

A20
B01

A21
B12

initial skew

shift-multiply-add

18

II. Languages (10):
Cannon's parallel matrix Multiplication

%Main loop
for i = 1:n

c = c + a * b;
a = circshift(a, [0, -1]);
b = circshift(b, [-1, 0]);

end

19

20

II. Languages (11):
Summa matrix multiplication

T2{:,:}

B

T1{:,:}A matmul

function C = summa (A, B, C)
for k=1:m

T1 = repmat(A{:, k}, 1, m);
T2 = repmat(B{k, :}, m, 1);
C = C + matmul(T1{:,:} ,T2 {:,:});

end

repmat

repmat

broadcast

parallel computation

21

II. Languages (12):
Advantages of tiles as first class objects

• Array/Tile notation produces code more
readable than MPI. It significantly reduces
number of lines of code.

22

EP CG MG FT LU

Lines of code

Lines of Code. HTA vs. MPI

II. Languages (13):
Advantages of tiles as a first class objects

23

• More important advantage: Tiling is explicit.
This simplifies/makes more effective
automatic optimization.

II. Languages (14):
Advantages of tiles as first class objects

for i=1:m
for j=1:m

for k=1:m
C{i,j}=C{i,j}+A{i,k}*B{k,j};

end
end

end

Size of tiles ?

II. Languages (15):
Data parallelism beyond arrays:

Operations on aggregates

• Operations on aggregates do not have to
be confined to arrays

• Other objects such as trees, graphs, and
sets can and have been used in the past.

• A good example of the use of sets for
programming is the language SETL.

24

II. Languages (16):
Parallel search algorithm

select

expand

W

expand

select

W

25

II. Languages (17):
Parallel search algorithm

W={root};
S = solutions(W)
while S = Ø

ALL = expand(W)
W = select(ALL)
S = solutions(W)
Tree = Tree + ALL /* + is set union */

26

II. Languages (18):
What problem domains and set

operations

• We have studied several areas including
– Search algorithms for discrete optimization
– Datamining
– Triangularization

• In all cases, it was possible to obtain a
highly parallel version using set operations

27

II. Languages (18):
Data parallel operators and parallel

programming
• Parallel programs written based on operators

resemble conventional, serial programs.
– Parallelism is encapsulated.
– Parallelism is structured

• Parallelism could be portable across classes of
machines.
– Operations must be reimplemented for each new

class of machine.
• Synthesis is possible
• Compiling facilitated by the higher level notation.

28

29

II. Languages (19):
Conclusions: What next ?

• High-level notations/new languages should be studied.
Much to be gained.

• Much potential in data parallel operations.
• But .. New languages by themselves will not go

far enough in reducing costs of parallelization.
• Automatic optimization is needed.
• Parallel programming languages should be

automatic optimization enablers.
– Need language/compiler co-design.

30

Outline of the talk

I. Introduction
II. Languages
III. Automatic program optimization

• Compilers
• Program synthesizers

IV. Conclusions

31

III. Automatic Program Optimization (1)

• The objective of compilers from the outset.

“It was our belief that if FORTRAN, during its first months,
were to translate any reasonable “scientific” source
program into an object program only half as fast as its
hand coded counterpart, then acceptance of our system
would be in serious danger.”

John Backus
Fortran I, II and III
Annals of the History of Computing, July 1979.

32

III. Automatic Program Optimization (2)

• Still far from solving the problem. CS
problems seem much easier than they are.

• Two approaches:
– Compilers
– The emerging new area of program synthesis.

33

Outline of the talk

I. Introduction
II. Languages
III. Automatic program optimization

• Compilers
• Program synthesizers

IV. Conclusions

34

III.1 Compilers (1)
Purpose

• Bridge the gap between programmer’s world
and machine world. Between readable/easy to
maintain code and unreadable high-performing
code.

• The idiosyncrasies of multicore machines,
however interesting in our eyes, are more a
problem than a solution.

• In an ideal world, compilers or related tools
should hide these idiosyncrasies.

• But, what is the hope of this happening today ?

35

III.1 Compilers (2)
How well do they work ?

• Evidence accumulated for many years show that
compilers today do not meet their original goal.

• Problems at all levels:
– Detection of parallelism
– Vectorization
– Locality enhancement
– Traditional compilation

• I’ll show only results from our research group.

36

III.1 Compilers (3)
How well do they work ?

Automatic detection of parallelism

flo52 arc2d bdna dyfesm adm mdg mg3d ocean qcd spec77 track trfd

0

5

10

15

20

Automatic Manual

R. Eigenmann, J. Hoeflinger, D. Padua On the Automatic Parallelization
of the Perfect Benchmarks. IEEE TPDS, Jan. 1998.

Alliant FX/80

37

III.1 Compilers (4)
How well do they work ?

Vectorization

0

1

2

3

4

Calc
ula

tio
n_o

f_the_L
TP...

Short
_Term

_A
nal

ysi
s_F

ilte
r

Short
_Term

_S
yn

thesi
s_Filte

r
cal

c_n
ois

e2
sy

nth
_1to

1
jpe

g_
idc

t_isl
ow

dist
1

fdct

form
_com

pon
en

t_p
red

ict
ion idc

t
IW

Pixmap
::in

it

pers
p_

tex
tured

_tria
ngle

gl_dep
th_te

st_
spa

n_
gen

eri
c

mix_
myst

ery
_si

gn
al

Sp
ee

du
ps

Manual Vectorization
ICC 8.0

G. Ren, P. Wu, and D. Padua: An Empirical Study on the
Vectorization of Multimedia Applications for Multimedia
Extensions. IPDPS 2005

38

Intel MKL
(hand-tuned
assembly)

Triply-nested loop+
icc optimizations

60X

Matrix Size

Matrix-matrix multiplication
on Intel Xeon

0

III. 1 Compilers (5)
How well do they work ?
Locality enhancement

K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, P. Stodghill.
Is Search Really Necessary to Generate High-Performance BLAS?
Proceedings of the IEEE. February 2005.

Compiler vs. Manual Tuning
Matrix Matrix Multiplication

20x

M
FL

O
P

S

Matrix Size

Intel MKL

icc -O3 -xT

icc -O3

39

Compiler vs. Manual Tuning
Matrix Matrix Multiplication

loop 1
c[i*N+j] += a[i*N+k]*b[k*N+j]

loop 2
c[i][j] += a[i][k]*b[k][j]

loop 3
C += a[i][k]*b[k][j]

40

41

III. 1 Compilers (6)
How well do they work ?
Scalar optimizations

J. Xiong, J. Johnson, and D Padua. SPL: A Language and Compiler for DSP
Algorithms. PLDI 2001

42

III. 1 Compilers (7)
What to do ?

• We must understand better the
effectiveness of today’s compilers.
– How far from the optimum ?

• One thing is certain: part of the problem is
implementation. Compilers are of uneven
quality. Need better compiler development
tools.

• But there is also the need for better
translation technology (and of course
better languages)

43

III.1 Compilers (8)
What to do ?

• One important issue that must be addressed is
optimization strategy.

• For while we understand somewhat how to
parse, analyze, and transform programs. The
optimization process is poorly understood.

• A manifestation of this is that increasing the
optimization level sometimes reduces
performance. Another is the recent interest in
search strategies for best compiler combination
of compiler switches.

44

III.1 Compilers (9)
What to do ?

• The use of machine learning is an
increasingly popular approach, but
analytical models although more difficult
have the great advantage that they rely on
our rationality rather than throwing dice.

45

III. 1 Compilers (10)
Obstacles

• Several factors conspire against progress
in program optimization
– The myth that the automatic optimization

problem is solved or insurmountable.
– The natural desire to work on fashionable

problems and “low hanging fruits”

46

Outline of the talk

I. Introduction
II. Languages
III. Automatic program optimization

• Compilers
• Program synthesizers

IV. Conclusions

47

III.2 Program Synthesizers (1)

• Emerging new field.
• Goal is to automatically generate highly efficient

code for each target machine.
• Typically, a generator is executed to empirically

search the space of possible
algorithms/implementations.

• Examples:
– In linear algebra: ATLAS, PhiPAC
– In signal processing: FFTW, SPIRAL

48

III.2 Program Synthesizers (3)

• Automatic generation of libraries would
– Reduce development cost
– For a fixed cost, enable a wider range of

implementations and thus make libraries more usable.
• Advantage over compilers: Can make use of

semantics
– More possibilities can be explored.

• Disadvantage over compilers: Domain specific.

49

Generator /
Search space

explorer

High-level code

Source-to-source
optimizer

Native compiler

Algorithm description

Object code Execution

performance

Selected
code

High-level code

Input data
(training)

III.2 Program Synthesizers (2)

III.2 Program Synthesizers (4)
Three synthesis projects

1. Spiral
Joint project with CMU and Drexel.
M. Püschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong, F. Franchetti,
A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL: Code
Generation for DSP Transforms. Proceedings of the IEEE special issue on "Program
Generation, Optimization, and Platform Adaptation”. Vol. 93, No. 2, pp. 232-275. February
2005.

2. Analytical models for ATLAS
Joint project with Cornell.
K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, P. Stodghill. Is Search Really
Necessary to Generate High-Performance BLAS? Proceedings of the IEEE special issue
on "Program Generation, Optimization, and Platform Adaptation”. Vol. 93, No. 2, pp. 358-
386. February 2005.

3. Sorting and adaptation to the input

In all cases results are surprisingly
good. Competitive or better than the
best manual results.

51

52

III.2 Program Synthesizers (5)
Sorting routine synthesis

• During training several features are selected
influenced by:

• Architectural features
• Different from platform to platform

• Input characteristics
• Only known at runtime

• Features such as: Radix for sorting, how to
sort small segments, when is a segment small.

X. Li, M. Garzarán, and D. Padua. Optimizing
Sorting with Genetic Algorithms. CGO2005

53

Intel Xeon

0.0014

0.0016

0.0018

0.002

0.0022

0.0024

0.0026

0.0028

0.003

0.0032

0.0034

1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08

Standard Deviation

K
e
y
s

p
e
r

C
y
cl

e

AMD Athlon MP

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08

Standard Deviation

K
e

y
s
 p

e
r

C
y
c
le

Quicksort CC-Radix Merge Sort

54

III.2 Program Synthesizers (6)
Sorting routine synthesis
Performance on Power4

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 100 1000 10000 100000 1e+06 1e+07

P
e
r
f
o
r
m
a
n
c
e

(
k
e
y
s

p
e
r

c
y
c
l
e
)

Standard Deviation
C++ STL XSort IBM ESSL

55

Similar results were obtained for parallel
sorting.

B. Garber. MS Thesis. UIUC. May 2006
D. Hoeflinger MS Thesis UIUC. August 2008.

III.2 Program Synthesizers (7)
Parallel sorting routine synthesis

III.2 Program Synthesizers (8)
Parallel sorting routine synthesis

Intel Quad CoreIntel Quad Core

56

57

III.2 Program Synthesizers (9)
Programming synthesizers

• Objective is to develop language extensions to
implement parameterized programs.

• Values of the parameters are a function of the
target machine and execution environment.

• Program synthesizers could be implemented
using autotuning extensions.

Sebastien Donadio, James Brodman, Thomas Roeder,
Kamen Yotov, Denis Barthou, Albert Cohen, María Jesús
Garzarán, David Padua and Keshav Pingali. A Language
for the Compact Representation of Multiples Program
Versions. In the Proc. of the International Workshop on
Languages and Compilers for Parallel Computing,
October 2005.

58

III.2 Program Synthesizers (10)
Programming synthesizers

Example extensions.

#pragma search (1<=m<=10, a)
#pragma unroll m

for(i=1;i<n;i++) { … }
%if (a) then {algorithm 1 }

else {algorithm 2 }

59

III.2 Program Synthesizers (11)
Research issues

• Reduction of the search space with
minimal impact on performance. Analytical
models/avoiding search.

• Adaptation to the input data (not needed
for dense linear algebra)

• More flexible synthesizers
– algorithms
– data structures
– classes of target machines

III.2 Program Synthesizers (12)
Research issues

• Autotuning libraries.
– Algorithms
– Data parallel primitives
– Empirically identified patterns or codelets

• Programming environments to facilitate
development of synthesizers.

60

61

IV. Conclusions
• Advances in languages and automatic

optimization will probably be slow. Difficult
problem.

• Advent of parallelism → Decrease in productivity.
Higher costs.

• But progress must and will be made.
• Automatic optimization (including parallelization)

is a difficult problem. At the same time is a core of
computer science:

How much can we automate ?

62

Acknowledgements

• I gratefully acknowledge support from
DARPA ITO, DARPA HPCS program and
NSF NGS program.

