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Succinct Data Structures 



Succinct data structures 

 Goal: represent the data in close to 
optimal space, while supporting fast 
queries. 

(optimal –– information-theoretic lower bound) 

 

Introduced by [Jacobson, FOCS ‘89] 

 

 An “extension” of data compression. 

(Data compression: 

 Achieve close to optimal space 

 Queries need not be supported efficiently ) 

 



 Succinct data structures are most useful 
when there is: 

 

 Massive amounts of data to be stored: DNA 
sequences, geographical/astronomical data, 
search engines etc. 

 Limited amount of memory available: small 
memory devices like PDAs, mobile phones etc. 

 

    By making the size of the data structure small,  

we may be able to keep it in higher levels of 
memory hierarchy and access it much faster. 

Applications 



Applications 

 Web Graph 

 Eg.: uk-union-2006-06-2007-05 

 #Nodes: 133,633,040 

 #Edges: 5,507,679,822 

 A plain representation requires 22GB! 

 A succinct representation takes <2GB. 

 XML data [Delpratt et al. 2006] 

 Data: XML trees with 57K to 160M nodes 

 Result: 3.12 to 3.81 bits per node 

 The space cost is merely a tiny percentage of 

an explicit representation! 

 Fast queries at the same time. 



Examples of SDS  

 Trees, Graphs 

 Bit vectors, Sets 

 Dynamic arrays 

 Permutations, Functions 

 

 Text indexes  

 suffix trees/suffix arrays etc. 

 XML documents, File systems (labeled, 
multi-labeled trees) 

 DAGs and BDDs 

 … 

 



Example: Text Indexing 

 A text string T of length n over an alphabet Σ can 

be represented using 

  n log |Σ| + o(n log |Σ|) bits, 

(or the even the k-th order entropy of T) 

 

 to support the following pattern matching queries 

(given a pattern P of length m): 

 count the # occurrences of P in T, 

 report all the occurrences of P in T, 

 output a substring of T of given length 

 in almost optimal time. 

Better space and functionality than inverted indices. 



Example: Compressed Suffix Trees 

 A string T of length n over an alphabet Σ 

can be stored using O(n log |Σ|) bits, to 

support all the operations supported by a 

standard suffix tree such as pattern 

matching queries, suffix links, string 

depths, lowest common ancestors etc. 

with slight slowdown. 

 

 Note that standard suffix trees use          

O(n log n) bits. 



Succinct Tree Representations 



Motivation 

Trees are used to represent: 

 

- Directories (Unix, all the rest) 

- Search trees (B-trees, binary search trees, 
digital trees or tries) 

- Graph structures (we do a tree based 
search) 

- Search indexes for text (including DNA) 

- Suffix trees 

- XML documents 

- … 



Drawbacks of standard representations 

 Standard representations of trees support 
very few operations. To support other 
useful queries, they require a large 
amount of extra space. 

 

 In various applications, one would like to 
support operations like “subtree size” of a 
node, “least common ancestor” of two 
nodes, “height”, “depth” of a node, 
“ancestor” of a node at a given level etc. 



Drawbacks of standard representations 

 The space used by the tree structure  
could be the dominating factor in some 
applications. 

 

 Eg. More than half of the space used by a 
standard suffix tree representation is used to 
store the tree structure. 

 

 “A pointer-based implementation of a suffix tree requires 
more than 20n bytes. A more sophisticated solution uses at 
least 12n bytes in the worst case, and about 8n bytes in the 
average. For example, a suffix tree built upon 700Mb of 
DNA sequences may take 40Gb of space.”  

     -- Handbook of Computational Molecular Biology, 2006  



Standard representation of (binary) trees 

Binary tree:  
each node has two 
pointers to its left 
and right children 

 
An n-node tree takes 
2n pointers or 2n lg n bits 
(can be easily reduced to  
 n lg n + O(n) bits). 
 
Supports finding left child or right child of a node 

(in constant time). 
 
For each extra operation (eg. parent, subtree size) 

we have to pay, roughly, an additional n lg n bits. 

x 

x x x x 

x x x x 



Can we improve the space bound? 

 There are less than 22n distinct binary 
trees on n nodes. 

 

 2n bits are enough to distinguish between 
any two different binary trees. 

 

 Can we represent an n node binary tree 
using 2n bits? 



Heap-like notation for a binary tree 

  

1 

1 1 1 

1 1 

1 

1 

0 0 0 0 

0 0 0 0 

0 

Add external nodes 

Label internal nodes with a 1 
and external nodes with a 0 

Write the labels in level order 

1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 

One can reconstruct the tree from this sequence 

An n node binary tree can be represented in 2n+1 bits. 

What about the operations? 



Heap-like notation for a binary tree 

  

1  1  1  1  0  1  1  0  1  0   0   1   0  0   0   0   0  

1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17  

8 

5 7 6 4 

3 2 

1 

9 

17 16 15 14 

13 12 11 10 

1 

8 7 

6 5 4 

3 2 

1  2  3  4      5  6      7           8                        

parent(x) = [
x/2
] 

left child(x) = [2x] 

right child(x) = [2x+1] 

x  x: # 1’s up to x 
 
x  x: position of x-th 1 



Rank/Select on a bit vector 

Given a bit vector B 

 

rank1(i) = # 1’s up to position i in B 

 

select1(i) = position of the i-th 1 in B  

     (similarly rank0 and select0) 

    1  2  3  4  5  6  7  8  9 10 11 12 13 14 15  
B: 0  1  1  0  1  0  0  0  1  1   0  1   1   1   1   

rank1(5) = 3 
select1(4) = 9  
rank0(5) = 2 
select0(4) = 7  

Given a bit vector of length n, by storing 
an additional o(n)-bit structure, we can 
support all four operations in O(1) time. 

An important substructure in most succinct data structures. 
 
Implementations: [Kim et al.], [Gonzalez et al.], ...  



Binary tree representation 

 A binary tree on n nodes can be 
represented using 2n+o(n) bits to  
support: 

 

 parent 

 left child 

 right child  

     

     in constant time. 

 

[Jacobson ‘89] 



Ordered trees 

A rooted ordered tree (on n nodes): 

 

Navigational operations: 

- parent(x) = a 

- first child(x) = b 

- next sibling(x) = c 

 

Other useful operations: 

- degree(x) = 2 

- subtree size(x) = 4 

x 

a 

b 

c 



Parenthesis representation 
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length: 2n 

space: 2n bits 

One can reconstruct the 
tree from this sequence 

Associate an open-close  
parenthesis-pair with each node 

Visit the nodes in pre-order, 
writing the parentheses 



Operations 

  1 

2 3 4 

5 6 7 8 9 

10 11 12 

(  (  (  )  (  (  )  )  )  (  )  (  (  )  (  (  )  (  )  )  (  )  )  ) 
1  2 5    6 10    6 2  3    4  7    8 11   12    8  9    4  1 

parent – enclosing parenthesis 

first child – next parenthesis (if ‘open’) 

next sibling – open parenthesis 
following the matching closing 
parenthesis (if exists) 

subtree size – half the number of 
parentheses between the pair 

with o(n) extra bits, all these can  
be supported in constant time 



Parenthesis representation 

 Space: 2n+o(n) bits 

 Supports: 

 

 

 

   

   

      in constant time. 

•parent 
•first child 
•next sibling 
•subtree size 
•degree 
•depth 
•height 

•level ancestor 
•LCA 
•leftmost/rightmost leaf 
•number of leaves in the subtree 
•next node in the level 
•pre/post order number  
•i-th child 

[Munro-Raman ‘97] [Munro et al. ‘01] [Sadakane ‘03] [Lu-Yeh ‘08] 
Implementation: [Geary et al. ‘04] 



Other methods 

 Space: 2n+o(n) bits 

 Supports: 

 

 

 

   

   

      in constant time. 

 

 

•parent 
•first child 
•next sibling 
•subtree size 
•degree 
•depth 
•height 

•level ancestor 
•LCA 
•leftmost/rightmost leaf 
•number of leaves in the subtree 
•next node in the level 
•pre/post order number  
•i-th child 

Tree covering: [Geary et al. ‘04] [He et al. ‘07] [Farzan-Munro ‘08] 
DFUDS:          [Demaine et al. ’05] [Jansson et al. ’07] 
Universal:       [Farzan-Raman-Rao, ‘09] 
Fully-Functional: [Sadakane-Navarro ‘10] 



Applications 

 Representing  

 

 suffix trees 

 

 XML documents (supporting XPath queries) 

 

 file systems (searching and Path queries) 

 

 representing BDDs 

 

 … 



Random access to compressed data  



Random Access to Compressed Strings 

text 
DNA 
XML 

• What is the ith character? 

• What is the substring at [i,j]? 

• Does pattern P appear in text? (perhaps with k errors?) 



Random Access to Grammar 
Compressed Strings 

 Grammar based compression captures many popular compression 

schemes with no or little blowup in space [Charikar et al. 2002, 

Rytter 2003].  

 Lempel-Ziv family, Sequitur, Run-Length Encoding, Re-Pair, ... 
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A G T A G T A G 
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AGTAGTAG N = 8 

X7 → X6X3 

X6 → X5X5 

X5 → X3X4 

X4 → T 
X3 → X1X2 

X2 → G 
X1 → A 

n = 7 



Tradeoffs and Results 

 What is the ith character? 

X3 

X2 X1 

X5 

X4 X3 

X2 X1 

X5 

X4 

X1 X2 

X3 X6 

X7 

A G T A G T A G 
1 2 3 4 5 6 7 8 

N 

n 
1 1 
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1 1 

2 6 

3 3 

2 1 

1 1 

2 

O(N) space 

O(1) query 

O(n) space 

O(n) query 

O(n) space 

O(log N) query 

• What is the substring at [i,j]? 
O(n) space 

O(log N + j - i) query 



Extension: Compressed Trees 

 Linear space in compressed tree.  

 Fast navigation operations (select, access, parent, depth, height, 

subtree_size, first_child, next_sibling, level_ancestor, lca): O(log N) 

time. 
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Range Searching Problems 



The 2D Range Minimum Problem 

•Input: an m x n-matrix of size N = m ∙ n,   m ≤ n. 

•Preprocess the matrix s.t. range minimum 

queries are efficiently supported. 

Minimum 

j’  

i’  

Introduced by Amir et al. 
(2007) as a 
generalization of the 
classic 1D RMQ 
problem. 



Models 

Encoding 
model 

 

   Queries can access 
data structure 
but not input 
matrix 

 

 

Minimum 

j’  

i’  

Indexing model 
 

  Queries can access 
data structure 
and read input 
matrix 

 



1D Range Minimum Queries 



2D Range Minimum Queries 



1D Range Top-k Problem 

 Input: an array A of size n, and a parameter k < n. 

 Preprocess the array s.t. range-top-k queries or kth-pos are 
efficiently supported. 

 range-top-k(i,j) returns the positions of the k largest values 
in A[i,j] 

 kth-pos(i,j) returns the position of the kth largest value in 
A[i,j]  

 

Eg.: 

 range-top-2(3,7) returns the positions {4, 6}. 

 4th-pos(2,8) returns 5 

  

15 12 9 21 18 25 14 29 



1D Range Top-k results 

 

 

 

 

 

 All one-sided queries can be answered 

with optimal space and time. 

 For two-sided kth-pos queries, we achieve 

close to optimal trade-offs.  

 



Current and future work 

 Making the succinct structures dynamic (there 

are some existing results) 

 

 Implementations of SDSs 

 

 Indexing compressed XML (labeled trees) (two 

different approaches supporting different sets of 

operations) 

 

 Other memory models 

 External memory model (a few recent results) 

 Flash memory model 

 (So far mostly RAM model) 
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