
Succinct Data Structures:

Towards Optimal Representation

of Massive Data

S. Srinivasa Rao

School of CSE

Seoul National University

Outline

 Succinct data structures
 Introduction

 Examples and applications

 Tree representations
 Motivation

 Heap-like representation for binary trees

 Parenthesis representation for ordered trees

 Applications

 Random access to compressed data

 Range searching problems

Succinct Data Structures

Succinct data structures

 Goal: represent the data in close to
optimal space, while supporting fast
queries.

(optimal –– information-theoretic lower bound)

Introduced by [Jacobson, FOCS ‘89]

 An “extension” of data compression.

(Data compression:

 Achieve close to optimal space

 Queries need not be supported efficiently)

 Succinct data structures are most useful
when there is:

 Massive amounts of data to be stored: DNA
sequences, geographical/astronomical data,
search engines etc.

 Limited amount of memory available: small
memory devices like PDAs, mobile phones etc.

 By making the size of the data structure small,

we may be able to keep it in higher levels of
memory hierarchy and access it much faster.

Applications

Applications

 Web Graph

 Eg.: uk-union-2006-06-2007-05

 #Nodes: 133,633,040

 #Edges: 5,507,679,822

 A plain representation requires 22GB!

 A succinct representation takes <2GB.

 XML data [Delpratt et al. 2006]

 Data: XML trees with 57K to 160M nodes

 Result: 3.12 to 3.81 bits per node

 The space cost is merely a tiny percentage of

an explicit representation!

 Fast queries at the same time.

Examples of SDS

 Trees, Graphs

 Bit vectors, Sets

 Dynamic arrays

 Permutations, Functions

 Text indexes

 suffix trees/suffix arrays etc.

 XML documents, File systems (labeled,
multi-labeled trees)

 DAGs and BDDs

 …

Example: Text Indexing

 A text string T of length n over an alphabet Σ can

be represented using

 n log |Σ| + o(n log |Σ|) bits,

(or the even the k-th order entropy of T)

 to support the following pattern matching queries

(given a pattern P of length m):

 count the # occurrences of P in T,

 report all the occurrences of P in T,

 output a substring of T of given length

 in almost optimal time.

Better space and functionality than inverted indices.

Example: Compressed Suffix Trees

 A string T of length n over an alphabet Σ

can be stored using O(n log |Σ|) bits, to

support all the operations supported by a

standard suffix tree such as pattern

matching queries, suffix links, string

depths, lowest common ancestors etc.

with slight slowdown.

 Note that standard suffix trees use

O(n log n) bits.

Succinct Tree Representations

Motivation

Trees are used to represent:

- Directories (Unix, all the rest)

- Search trees (B-trees, binary search trees,
digital trees or tries)

- Graph structures (we do a tree based
search)

- Search indexes for text (including DNA)

- Suffix trees

- XML documents

- …

Drawbacks of standard representations

 Standard representations of trees support
very few operations. To support other
useful queries, they require a large
amount of extra space.

 In various applications, one would like to
support operations like “subtree size” of a
node, “least common ancestor” of two
nodes, “height”, “depth” of a node,
“ancestor” of a node at a given level etc.

Drawbacks of standard representations

 The space used by the tree structure
could be the dominating factor in some
applications.

 Eg. More than half of the space used by a
standard suffix tree representation is used to
store the tree structure.

 “A pointer-based implementation of a suffix tree requires
more than 20n bytes. A more sophisticated solution uses at
least 12n bytes in the worst case, and about 8n bytes in the
average. For example, a suffix tree built upon 700Mb of
DNA sequences may take 40Gb of space.”

 -- Handbook of Computational Molecular Biology, 2006

Standard representation of (binary) trees

Binary tree:
each node has two
pointers to its left
and right children

An n-node tree takes
2n pointers or 2n lg n bits
(can be easily reduced to
 n lg n + O(n) bits).

Supports finding left child or right child of a node

(in constant time).

For each extra operation (eg. parent, subtree size)

we have to pay, roughly, an additional n lg n bits.

x

x x x x

x x x x

Can we improve the space bound?

 There are less than 22n distinct binary
trees on n nodes.

 2n bits are enough to distinguish between
any two different binary trees.

 Can we represent an n node binary tree
using 2n bits?

Heap-like notation for a binary tree

1

1 1 1

1 1

1

1

0 0 0 0

0 0 0 0

0

Add external nodes

Label internal nodes with a 1
and external nodes with a 0

Write the labels in level order

1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0

One can reconstruct the tree from this sequence

An n node binary tree can be represented in 2n+1 bits.

What about the operations?

Heap-like notation for a binary tree

1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

8

5 7 6 4

3 2

1

9

17 16 15 14

13 12 11 10

1

8 7

6 5 4

3 2

1 2 3 4 5 6 7 8

parent(x) = [
x/2
]

left child(x) = [2x]

right child(x) = [2x+1]

x x: # 1’s up to x

x x: position of x-th 1

Rank/Select on a bit vector

Given a bit vector B

rank1(i) = # 1’s up to position i in B

select1(i) = position of the i-th 1 in B

 (similarly rank0 and select0)

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
B: 0 1 1 0 1 0 0 0 1 1 0 1 1 1 1

rank1(5) = 3
select1(4) = 9
rank0(5) = 2
select0(4) = 7

Given a bit vector of length n, by storing
an additional o(n)-bit structure, we can
support all four operations in O(1) time.

An important substructure in most succinct data structures.

Implementations: [Kim et al.], [Gonzalez et al.], ...

Binary tree representation

 A binary tree on n nodes can be
represented using 2n+o(n) bits to
support:

 parent

 left child

 right child

 in constant time.

[Jacobson ‘89]

Ordered trees

A rooted ordered tree (on n nodes):

Navigational operations:

- parent(x) = a

- first child(x) = b

- next sibling(x) = c

Other useful operations:

- degree(x) = 2

- subtree size(x) = 4

x

a

b

c

Parenthesis representation

 ()

()

()

() ()

() () () ()

() () ()

(

(

(

)

(

(

)

)

)

)

(

(

)

)

)

)

)

)

(

(

(

(

(

)

length: 2n

space: 2n bits

One can reconstruct the
tree from this sequence

Associate an open-close
parenthesis-pair with each node

Visit the nodes in pre-order,
writing the parentheses

Operations

 1

2 3 4

5 6 7 8 9

10 11 12

((() (())) () (() (() ()) ()))
1 2 5 6 10 6 2 3 4 7 8 11 12 8 9 4 1

parent – enclosing parenthesis

first child – next parenthesis (if ‘open’)

next sibling – open parenthesis
following the matching closing
parenthesis (if exists)

subtree size – half the number of
parentheses between the pair

with o(n) extra bits, all these can
be supported in constant time

Parenthesis representation

 Space: 2n+o(n) bits

 Supports:

 in constant time.

•parent
•first child
•next sibling
•subtree size
•degree
•depth
•height

•level ancestor
•LCA
•leftmost/rightmost leaf
•number of leaves in the subtree
•next node in the level
•pre/post order number
•i-th child

[Munro-Raman ‘97] [Munro et al. ‘01] [Sadakane ‘03] [Lu-Yeh ‘08]
Implementation: [Geary et al. ‘04]

Other methods

 Space: 2n+o(n) bits

 Supports:

 in constant time.

•parent
•first child
•next sibling
•subtree size
•degree
•depth
•height

•level ancestor
•LCA
•leftmost/rightmost leaf
•number of leaves in the subtree
•next node in the level
•pre/post order number
•i-th child

Tree covering: [Geary et al. ‘04] [He et al. ‘07] [Farzan-Munro ‘08]
DFUDS: [Demaine et al. ’05] [Jansson et al. ’07]
Universal: [Farzan-Raman-Rao, ‘09]
Fully-Functional: [Sadakane-Navarro ‘10]

Applications

 Representing

 suffix trees

 XML documents (supporting XPath queries)

 file systems (searching and Path queries)

 representing BDDs

 …

Random access to compressed data

Random Access to Compressed Strings

text
DNA
XML

• What is the ith character?

• What is the substring at [i,j]?

• Does pattern P appear in text? (perhaps with k errors?)

Random Access to Grammar
Compressed Strings

 Grammar based compression captures many popular compression

schemes with no or little blowup in space [Charikar et al. 2002,

Rytter 2003].

 Lempel-Ziv family, Sequitur, Run-Length Encoding, Re-Pair, ...

X3

X2 X1

X5

X4 X3

X2 X1

X5

X4

X1 X2

X3 X6

X7

A G T A G T A G
1 2 3 4 5 6 7 8

N

≤n

AGTAGTAG N = 8

X7 → X6X3

X6 → X5X5

X5 → X3X4

X4 → T
X3 → X1X2

X2 → G
X1 → A

n = 7

Tradeoffs and Results

 What is the ith character?

X3

X2 X1

X5

X4 X3

X2 X1

X5

X4

X1 X2

X3 X6

X7

A G T A G T A G
1 2 3 4 5 6 7 8

N

n
1 1

1

1 1

2 6

3 3

2 1

1 1

2

O(N) space

O(1) query

O(n) space

O(n) query

O(n) space

O(log N) query

• What is the substring at [i,j]?
O(n) space

O(log N + j - i) query

Extension: Compressed Trees

 Linear space in compressed tree.

 Fast navigation operations (select, access, parent, depth, height,

subtree_size, first_child, next_sibling, level_ancestor, lca): O(log N)

time.

b c

d b

a

c a

d

b

c d

b

b

c d

c d b

d b

a

c a

c d

Range Searching Problems

The 2D Range Minimum Problem

•Input: an m x n-matrix of size N = m ∙ n, m ≤ n.

•Preprocess the matrix s.t. range minimum

queries are efficiently supported.

Minimum

j’

i’

Introduced by Amir et al.
(2007) as a
generalization of the
classic 1D RMQ
problem.

Models

Encoding
model

 Queries can access
data structure
but not input
matrix

Minimum

j’

i’

Indexing model

 Queries can access
data structure
and read input
matrix

1D Range Minimum Queries

2D Range Minimum Queries

1D Range Top-k Problem

 Input: an array A of size n, and a parameter k < n.

 Preprocess the array s.t. range-top-k queries or kth-pos are
efficiently supported.

 range-top-k(i,j) returns the positions of the k largest values
in A[i,j]

 kth-pos(i,j) returns the position of the kth largest value in
A[i,j]

Eg.:

 range-top-2(3,7) returns the positions {4, 6}.

 4th-pos(2,8) returns 5

15 12 9 21 18 25 14 29

1D Range Top-k results

 All one-sided queries can be answered

with optimal space and time.

 For two-sided kth-pos queries, we achieve

close to optimal trade-offs.

Current and future work

 Making the succinct structures dynamic (there

are some existing results)

 Implementations of SDSs

 Indexing compressed XML (labeled trees) (two

different approaches supporting different sets of

operations)

 Other memory models

 External memory model (a few recent results)

 Flash memory model

 (So far mostly RAM model)

40

Thank You

