서울대학교 반도체 특성화 대학 반도체 트랙 프로그램 학부 장학생 모집

1. 모집 기간

2023.09.12. (화) ~ 2023.09.26. (화)

2. 지원 자격

- 다음 항목을 모두 만족하는 자
 - 가. 학사과정 재학 중인 학점 3.0/4.3 이상 학부생
 - 나. 전기정보공학부, 컴퓨터공학부, 재료공학부, 화학생물공학부, 물리천문학부(물리학 전공), 화학부, 수리과학부 소속 학부생

3. 장학생 혜택

- 가. 장학금 지급

	장학 금액
선발 (학업장려)	100 만원
졸업	500 ~ 1000 만원 (차등지급)

- 나. 해외 우수대학, 우수연구소, 과학박물관 견학 등 지원
- 다. 대학원생과의 멘토링 프로그램 제공

수료 요건 (필수)

- 학생의 소속 학과와 무관하게 졸업 시 **반도체 관련 교과목 中 30학점 이상**을 수강해야 함. (반도체 관련 교과목 리스트는 지원서 양식과 함께 첨부함.)

4. 지원 방법

e-mail 주소(snusemicon@gmail.com)로 지원서 양식 요청

* 기타 문의 사항은 02-880-1626, e-mail(snusemicon@gmail.com)로 연락주시기 바랍니다.

□ 반도체 트랙 교과목 목록

학부 (과)	과목명
공과대학 공통	재료공학개론
	전기정보공학개론
	IoT·인공지능·빅데이터 개론 및 실습
	머신러닝을 위한 기초 수학 및 프로그래밍 실습
	양자역학의 기초
	딥러닝의 기초
	프로그래밍방법론
	논리설계 및 실험
	전기정보세미나 1
	기초전자기학 및 연습
	자료구조의 기초
	기초회로이론 및 실험
	전기시스템선형대수
	전기정보세미나 2
	기초전자회로 및 실험
	컴퓨터조직론
	알고리즘의 기초
전기정보공학부	전자기학
	반도체소자
	디지털 시스템 설계 및 실험
	아날로그 전자회로
	확률변수 및 확률과정의 기초
	양자역학의 응용
	전기정보세미나 3
	전기공학설계프로젝트
	임베디드 시스템 설계
	나노소자의 기초
	전자물리의 기초

	디지털 집적회로
	마이크로나노시스템 기술 개론
	컴퓨터비전의 기초
	아날로그 집적회로
	운영체제의 기초
	컴파일러의 기초
	유기전자소자
	광전자공학
	프로그래밍 연습
	전기전자회로
	컴퓨터구조
	컴퓨터프로그래밍
	논리설계
	자료구조
	컴퓨터공학세미나
	알고리즘
	시스템프로그래밍
	하드웨어 시스템설계
컴퓨터공학부	프로그래밍 언어
	선형 및 비선형 계산모델
	소프트웨어 개발의 원리와 실습
	인공지능
	운영체제
	소프트웨어응용
	임베디드시스템과 응용
	컴파일러
	소프트웨어공학
	멀티코어 컴퓨팅
	IT-리더십세미나
재료공학부	전기 회로
川平のゴア	반도체 집적공정

	 최신반도체재료 및 소자
-	
	뉴로모픽 컴퓨팅 재료, 소자 및 알고리즘
화학생물공학부	물리화학 1
	물리화학 2
	공정제어 및 설계
	화공전산응용
	공정 및 제품설계
	화학생물공학세미나
	전기와 자기
	전기와 자기 연습
	현대 물리학의 기초
	기초현대물리실험
	양자물리 1
	양자물리 2
물리천문학부 (물리학 전공)	열과 통계처리
(2 1 7 6 6)	전자기파와 광학
	전자기파와 광학 연습
	전산물리
	물리학과 신기술
	 물리학의 산업응용
-	 고체의 성질
	 물리화학 1
	 물리화학 2
화학부 - -	물리화학 3
	물리분석실험
	 양자화학
	 계산화학
수리과학부	미분방정식

	미분방정식 및 연습	
	선형대수학 1	
	선형대수학 2	
혁신공유학부	반도체 CEO 특강	
	반도체 산업의 이해	
	메모리와 반도체	
	인공지능 시스템 설계 프로젝트	
	인공지능 하드웨어 설계 프로젝트	
	인공지능 반도체 소자 설계 프로젝트	
	인공지능 반도체 회로 설계 프로젝트	
대학원	반도체 소자 특강	
	전기전자 기술의 산업응용	
	전기에너지변환 및 회로특강	
반도체 관련 연구 과목 가능		