강유 교수 연구진이 실세계 데이터 분석 및 예측을 정확하고 효과적으로 수행하는 기법들을 개발하였다. 해당 기법들은 시간적 특성을 갖는 데이터에 맞게 설계되었으며, 각 데이터의 성격 및 특성에 따라 최적화되었다.
연구진의 이번 성과는 시계열 데이터, 텐서 데이터, 주가 데이터, 지식 그래프 등 다양한 데이터에 대한 분석 및 예측에 범용적으로 쓰이는 핵심 기술로, 앞으로 다양한 AI 응용에 활용될 것으로 예상된다.
위 논문 4편은 오는 8월 빅데이터 및 인공지능 분야 최우수 학회인 The 27th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2021)에 발표될 예정인데, 한 연구실에서 KDD에 4편을 발표하는 것은 매우 이례적인 성과이다.