물리 기반 시뮬레이션 환경에서 다수의 근육을 갖춘 인간 모델을 효율적이고 안정적으로 원하는 방향으로 조종할 수 있도록 하는 제어 시스템 학습 알고리즘을 개발
원정담 교수 연구실 박사과정생 박정남 학생(Team GaitNet)이 NeurIPS 2023에서 열린 MyoChallenge 2023 competition의 locomotion track 에서 1위를 차지하였다. MyoChallenge 2023 은 물리 기반 근골격 시뮬레이션 환경에서 주어진 목표들을 수행하도록 사람 모델의 근육을 제어하여야 하며, '목표의 달성 정도', '제어의 효율성' 등의 기준을 바탕으로 순위를 매긴다. 총 2개의 track(locomotion, manipulation) 으로 구성되어 있으며, locomotion track은 복잡한 지형 위에서 80개의 다리 근육을 제어하여, 움직이는 물체를 따라가거나 피하는 목표가 주어진다. 해당 목표를 성공적으로 수행하는 근육 제어기를 학습함으로써 실제 사람의 동작 매커니즘과 유사한 근육기반의 시뮬레이션에서 사람의 움직임에 대한 더 깊은 이해를 할 수 있다.
원정담 교수 팀은 심층강화학습에 기반한 curriculum learning 을 제안하여, 빠르게 움직이는 물체를 쫓아가거나 그 물체를 피하는 목표를 수행하면서 균형을 유지할 수 있는 제어기를 학습하는 것에 성공하였다. 연구팀은 실제 인간 동작 데이터를 활용하여 기본 걷기 및 균형 잡기 기술을 학습시킨 후, 이를 바탕으로 보다 복잡하고 민첩한 동작을 습득하는 알고리즘을 제안하였다. 실제 사람의 근골격 모델을 바탕으로 하는 복잡한 시뮬레이션 환경에서 안정적면서 민첩한 제어에 성공함으로써, 사람의 동작과 근골격계 사이의 관계를 밝히는 연구에 큰 기여를 할 것으로 기대한다.