직함: [seminar] Guided reinforcement learning to learn interactive motor skills
Georgia Institute of Technology
Intelligent robot companions have the potential to improve the quality of human life significantly by changing how we live, work, and play. While recent advances in software and hardware opened a new horizon of robotics, state-of-the-art robots are yet far from being blended into our daily lives due to the lack of human-level scene understanding, motion control, safety, and rich interactions. I envision legged robots as intelligent machines beyond simple walking platforms, which can execute a variety of real-world motor tasks in human environments, such as home arrangements, last-mile delivery, and assistive tasks for disabled people. In this talk, I will discuss relevant multi-disciplinary research topics, particularly focusing on how we can extend deep reinforcement learning algorithms to learn more challenging interactive motor skills effectively.
Sehoon Ha is currently an assistant professor at the Georgia Institute of Technology. Before joining Georgia Tech, he was a research scientist at Google and Disney Research Pittsburgh. He received his Ph.D. degree in Computer Science from the Georgia Institute of Technology. His research interests lie at the intersection between computer graphics and robotics, including physics-based animation, deep reinforcement learning, and computational robot design. He is a recipient of the NSF CAREER Award. His work has been published at top-tier venues including ACM Transactions on Graphics, IEEE Transactions on Robotics, and International Journal of Robotics Research, nominated as the best conference paper (Top 3) in Robotics: Science and Systems, and featured in the popular media press such as IEEE Spectrum, MIT Technology Review, PBS News Hours, and Wired.